Thứ Tư, 30 tháng 9, 2020

Số gần đúng sai số - soanbaitap.com

I. SỐ GẦN ĐÚNG

Ví dụ 1. Khi tính diện tích của hình tròn bán kính r = 2 cm theo công thức S = π.r2.

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Nam lấy một giá trị gần đúng của π là 3,1

và được kết quả S = 3,1.4 = 12,4 cm2

Minh lấy một giá trị gần đúng của π là 3,14

và được kết quả S = 3,14.4 = 12,56 cm2

Vì π = 3,14592653… là một số thập phân vô hạn không tuần hoàn, nên ta chỉ viết được gần đúng kết quả phép tính π.r2 bằng một số thập phân hữu hạn.

II. QUY TRÒN SỐ GẦN ĐÚNG

1. Ôn tập quy tắc làm tròn số

Trong sách giáo khoa Toán 7 tập một ta đã biết quy tắc làm tròn đến một hàng nào đó (gọi là hàng quy tròn) như sau

Nếu chữ số sau hàng quy tròn nhỏ hơn 5 thì ta thay nó và các chữ số bên phải nó bởi chữ số 0.

Nếu chữ số sau hàng quy tròn lớn hơn hoặc bằng 5 thì ta cũng làm như trên, nhưng cộng thêm một đơn vị vào chữ số hàng quy tròn.

Chẳng hạn

Số quy tròn đến hàng nghìn của x = 2 841 675 là x ≈ 2 842 000 của y = 432 415 là y ≈ 432 000

Số quy tròn đến hàng trăm của x = 12,4253 là x ≈ 12,43, của y = 4,1521 là y ≈ 4,15 .

2. Cách viết số quy tròn của số gần đúng căn cứ vào độ chính xác cho trước

Ví dụ 2. Cho số gần đúng a = 2 841 275 có độ chính xác d = 300. Hãy viết số quy tròn của số a.

Giải.

Vì độ chính xác đến hàng trăm (d = 300) nên ta quy tròn a đến hàng nghìn theo quy tắc làm tròn ở trên.

Vậy số quy tròn của a là 2 841 000.

Ví dụ 3. Hãy viết số quy tròn của số gần đúng a = 3,1463 biết: Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án = 3,1463 ± 0,001

Giải.

Vì độ chính xác đến hàng phần nghìn (độ chính xác là 0,001) nên ta quy tròn số 3,1463 đến hàng trăm theo quy tắc làm tròn ở trên. Vậy số quy tròn của a là 3,15.



#soanbaitap Social https://ift.tt/2S06Bff
Nguồn : Số gần đúng sai số - soanbaitap.com

Bất đẳng thức - soanbaitap.com

I. ÔN TẬP BẤT ĐẲNG THỨC

1. Khái niệm bất đẳng thức

Các mệnh đề dạng “a > b” hoặc “a > b” được gọi là bất đẳng thức.

2. Bất đẳng thức hệ quả và bất đẳng thức tương đương

Nếu mệnh đề “a > b => c > d” đúng thì ta nói bất đẳng thức c > d là bất đẳng thức hệ quả của bất đẳng thức a > b và cũng viết là a > b => c > d.

Nếu bất đẳng thức a > b là hệ quả của bất đẳng thức c > d và ngược lại thì ta nói hai bất đẳng thức tương đương với nhau và viết là a > b <=> c > d.

3. Tính chất của bất đẳng thức

Như vậy để chứng minh bất đẳng thức a > b ta chỉ cần chứng minh a – b > 0. Tổng quát hơn, khi so sánh hai số, hai biểu thức hoặc chứng minh một bất đẳng thức, ta có thể sử dụng các tính chất của bất đẳng thức được tóm tắt trong bảng sau

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Chú ý

Ta còn gặp các mệnh đề dạng a ≤ b hoặc a ≥ b. Các mệnh đề dạng này cũng được gọi là bất đẳng thức. Để phân biệt, ta gọi chúng là các bất đẳng thức không ngặt và gọi các bất đẳng thức dạng a < b hoặc a > b là các bất đẳng thức ngặt. Các tính chất nêu trong bảng trên cũng đúng cho bất đẳng thức không ngặt.

II. BẤT ĐẲNG THỨC GIỮA TRUNG BÌNH CỘNG VÀ TRUNG BÌNH NHÂN (BẤT ĐẲNG THỨC CÔ-SI)

1. Bất đẳng thức Cô-si

Định lí

Trung bình nhân của hai số không âm nhỏ hơn hoặc bằng trung bình cộng của chúng

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Đẳng thức Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án xảy ra khi và chỉ khi a = b.

2. Các hệ quả

Hệ quả 1

Tổng của một số dương với nghịch đảo của nó lớn hơn hoặc bằng 2.

a + Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án ≥ 2, ∀a > 0.

Hệ quả 2

Nếu x, y cùng dương và có tổng không đổi thì tích xy lớn nhất khi và chỉ khi x = y.

Hệ quả 3

Nếu x, y cùng dương và có tích không đổi thì tổng x + y nhỏ nhất khi và chỉ khi x = y.

III. BẤT ĐẲNG THỨC CHỨA DẤU GIÁ TRỊ TUYỆT ĐỐI

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án



#soanbaitap Social https://ift.tt/2S06Bff
Nguồn : Bất đẳng thức - soanbaitap.com

Ôn tập chương III – Phương trình. Hệ phương trình - soanbaitap.com

ĐẠI CƯƠNG VỀ PHƯƠNG TRÌNH

I. KHÁI NIỆM PHƯƠNG TRÌNH

Phương trình ẩn x là mệnh đề chứa biến có dạng

f(x) = g(x) (1)

trong đó f(x) và g(x) là những biểu thức của x. Ta gọi f(x) là vế trái, g(x) là vế phải của phương trình (1).

Nếu có số thực xo sao cho f(xo) = g(xo) là mệnh đề đúng thì x0 được gọi là một nghiệm của phương trình (1).

Giải phương trình (1) là tìm tất cả các nghiệm của nó (nghĩa là tìm tập nghiệm).

Nếu phương trình không có nghiệm nào cả thì ta nói phương trình vô nghiệm (hoặc nói tập nghiệm của nó là rỗng).

2. Điều kiện của một phương trình

Khi giải phương trình (1), ta cần lưu ý với điều kiện đối với ẩn số x để f(x) và g(x) có nghĩa (tức là mọi phép toán đều thực hiện được). Ta cũng nói đó là điều kiện xác định của phương trình (hay gọi tắt là điều kiện của phương trình).

3. Phương trình nhiều ẩn

Ngoài các phương trình một ẩn, ta còn gặp những phương trình có nhiều ẩn số, chẳng hạn

3x + 2y = x2 – 2xy + 8, (2)

4x2 – xy + 2z = 3z2 + 2xz + y2 ( 3)

Phương trình (2) là phương trình hai ẩn (x và y), còn (3) là phương trình ba ẩn (x, y và z).

Khi x = 2, y = 1 thì hai vế của phương trình (2) có giá trị bằng nhau, ta nói cặp (x; y) = (2; 1) là một nghiệm của phương trình (2).

Tương tự, bộ ba số (x; y; z) = (–1; 1; 2) là một nghiệm của phương trình (3).

4. Phương trình chứa tham số

Trong một phương trình (một hoặc nhiều ẩn), ngoài các chữ đóng vai trò ẩn số còn có thể có các chữ khác được xem như những hằng số và được gọi là tham số.

II. PHƯƠNG TRÌNH TƯƠNG ĐƯƠNG VÀ PHƯƠNG TRÌNH HỆ QUẢ

1. Phương trình tương đương

Hai phương trình được gọi là tương đương khi chúng có cùng tập nghiệm.

2. Phép biến đổi tương đương

Định lí

Nếu thực hiện các phép biển đổi sau đây trên một phương trình mà không làm thay đổi điều kiện của nó thì ta được một phương trình mới tương đương

a) Cộng hay trừ hai vế với cùng một số hoặc cùng một biểu thức;

b) Nhân hoặc chia hai vế với cùng một số khác 0 hoặc với cùng một biểu thức luôn có giá trị khác 0.

Chú ý: Chuyển vế và đổi dấu một biểu thức thực chất là thực hiện phép cộng hay trừ hai vế với biểu thức đó.

3. Phương trình hệ quả

Nếu mọi nghiệm của phương trình f(x) = g(x) đều là nghiệm của phương trình f1(x) = g1(x) thì phương trình f1(x) = g1(x) được gọi là phương trình hệ quả của phương trình f(x) = g(x).

Ta viết

f(x) = g(x) => f1(x) = g1(x).

Phương trình hệ quả có thể có thêm nghiệm không phải là nghiệm của phương trình ban đầu. Ta gọi đó là nghiệm ngoại lai.

PHƯƠNG TRÌNH QUY VỀ BẬC NHẤT, BẬC HAI

Có nhiều phương trình khi giải có thể biến đổi về phương trình bậc nhất hoặc bậc hai.

Sau đây ta xét hai trong các dạng phương trình đó.

1. Phương trình chứa ẩn trong dấu giá trị tuyệt đối

Để giải phương trình chứa ẩn trong dấu giá trị tuyệt đối ta có thể dùng định nghĩa của giá trị tuyệt đối hoặc bình phương hai vế để khử dấu giá trị tuyệt đối.

2. Phương trình chứa ẩn dưới dấu căn

Để giải các phương trình chứa ẩn dưới dấu căn bậc hai, ta thường bình phương hai vế để đưa về một phương trình hệ quả không chứa ẩn dưới dấu căn.

PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH BẬC NHẤT NHIỀU ẨN

I. ÔN TẬP VỀ PHƯƠNG TRÌNH VÀ HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN

1. Phương trình bậc nhất hai ẩn

Phương trình bậc nhất hai ẩn x , ycó dạng tổng quát là

ax + by = c (1)

trong đó a, b, c là các hệ số, với điều kiện a và b không đồng thời bằng 0.

CHÚ Ý

a) Khi a = b = 0 ta có phương trình 0x + 0y = c. Nếu c ≠ 0 thì phương trình này vô nghiệm, còn nếu c = 0 thì mọi cặp số (xo; yo) đều là nghiệm.

b) Khi b ≠ 0, phương trình ax + by = c trở thành

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Cặp số (xo; yo) là một nghiệm của phương trình (1) khi và chỉ khi điểm M(xo; yo) thuộc đường thẳng (2).

Tổng quát, người ta chứng minh được rằng phương trình bậc nhất hai ẩn luôn luôn có vô số nghiệm. Biểu diễn hình học tập nghiệm của phương trình của phương trình (1) là một đường thẳng trong mặt phẳng tọa độ Oxy.

2. Hệ hai phương trình bậc nhất hai ẩn

Hệ phương trình bậc nhất hai ẩn có dạng tổng quát là

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Trong đó x, y là hai ẩn; các chữ số còn lại là hệ số.

Nếu cặp số (xo; yo) đồng thời là nghiệm của cả hai phương trình của hệ thì (x0; y0) được gọi là một nghiệm của hệ phương trình (3).

Giải hệ phương trình (3) là tìm tập nghiệm của nó.

II. HỆ BA PHƯƠNG TRÌNH BẬC NHẤT BA ẨN

Phương trình bậc nhất ba ẩn có dạng tổng quát là

ax + by + cz = d,

trong đó x, y, z là ba ẩn a, b, c, d là các hệ số và a, b, c không đồng thời bằng 0.

Hệ phương trình bậc nhất ba ẩn có dạng tổng quát là

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Trong đó x, y, z là ba ẩn; các chữ còn lại là các hệ số.

Mỗi bộ ba số (x0; y0; z0) nghiệm đúng ba phương trình của hệ được gọi là một nghiệm của hệ phương trình (4).



#soanbaitap Social https://ift.tt/2S06Bff
Nguồn : Ôn tập chương III – Phương trình. Hệ phương trình - soanbaitap.com

Phương trình và hệ phương trình bậc nhất nhiều ẩn - soanbaitap.com

I. ÔN TẬP VỀ PHƯƠNG TRÌNH VÀ HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN

1. Phương trình bậc nhất hai ẩn

Phương trình bậc nhất hai ẩn x , y có dạng tổng quát là

ax + by = c (1)

trong đó a, b, c là các hệ số, với điều kiện a và b không đồng thời bằng 0.

CHÚ Ý

a) Khi a = b = 0 ta có phương trình 0x + 0y = c. Nếu c ≠ 0 thì phương trình này vô nghiệm, còn nếu c = 0 thì mọi cặp số (xo; yo) đều là nghiệm.

b) Khi b ≠ 0, phương trình ax + by = c trở thành

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Cặp số (xo; yo) là một nghiệm của phương trình (1) khi và chỉ khi điểmM(xo; yo) thuộc đường thẳng (2).

Tổng quát, người ta chứng minh được rằng phương trình bậc nhất hai ẩn luôn luôn có vô số nghiệm. Biểu diễn hình học tập nghiệm của phương trình của phương trình (1) là một đường thẳng trong mặt phẳng tọa độ Oxy.

2. Hệ hai phương trình bậc nhất hai ẩn

Hệ phương trình bậc nhất hai ẩn có dạng tổng quát là

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Trong đó x, y là hai ẩn; các chữ số còn lại là hệ số.

Nếu cặp số (x0; y0) đồng thời là nghiệm của cả hai phương trình của hệ thì (x0; y0) được gọi là một nghiệm của hệ phương trình (3).

Giải hệ phương trình (3) là tìm tập nghiệm của nó.

II. HỆ BA PHƯƠNG TRÌNH BẬC NHẤT BA ẨN

Phương trình bậc nhất ba ẩn có dạng tổng quát là

ax + by + cz = d,

trong đó x, y, z là ba ẩn a, b, c, d là các hệ số và a, b, c không đồng thời bằng 0.

Hệ phương trình bậc nhất ba ẩn có dạng tổng quát là

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Trong đó x, y, z là ba ẩn; các chữ còn lại là các hệ số.

Mỗi bộ ba số (xo; yo; zo) nghiệm đúng ba phương trình của hệ được gọi là một nghiệm của hệ phương trình (4).



#soanbaitap Social https://ift.tt/2S06Bff
Nguồn : Phương trình và hệ phương trình bậc nhất nhiều ẩn - soanbaitap.com

Phương trình quy về phương trình bậc nhất, bậc hai - soanbaitap.com

I. ÔN TẬP VỀ PHƯƠNG TRÌNH BẬC NHẤT, BẬC HAI

1. Phương trình bậc nhất

Cách giải và biện luận phương trình dạng ax + b = 0 được tóm tắt trong bảng sau

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Khi a ≠ 0 phương trình ax + b = 0 được gọi là phương trình bậc nhất một ẩn.

2. Phương trình bậc hai

Cách giải và công thức nghiệm của phương trình bậc hai được tóm tắt trong bảng sau

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

3. Định lí Vi–ét

Nếu phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0) có hai nghiệm x1, x2 thì

x1 + x2 = -Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án , x1x2 = Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án.

Ngược lại, nếu hai số u và v có tổng u + v = S và tích uv = P thì u và v là các nghiệm của phương trình

x2 – Sx + P = 0.

II. PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC NHẤT, BẬC HAI

Có nhiều phương trình khi giải có thể biến đổi về phương trình bậc nhất hoặc bậc hai.

Sau đây ta xét hai trong các dạng phương trình đó.

1. Phương trình chứa ẩn trong dấu giá trị tuyệt đối

Để giải phương trình chứa ẩn trong dấu giá trị tuyệt đối ta có thể dùng định nghĩa của giá trị tuyệt đối hoặc bình phương hai vế để khử dấu giá trị tuyệt đối.

Ví dụ 1. Giải phương trình |x – 3| = 2x + 1. (3)

Giải

Cách 1

a) Nếu x ≥ 3 thì phương trình (3) trở thành x – 3 = 2x + 1. Từ đó x = –4.

Giá trị x = –4 không thỏa mãn điều kiện x ≥ 3 nên bị loại.

b) Nếu x < 3 thì phương trình (3) trở thành –x + 3 = 2x + 1. Từ đó x = Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án.

Giá trị này thỏa mãn điều kiện x < 3 nên là nghiệm.

Kết luận. Vậy nghiệm của phương trình là x = Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Cách 2. Bình phương hai vế của phương trình (3) ta đưa tới phương trình hệ quả

(3) => (x – 3)2 = (2x + 1)2

=> x2 – 6x + 9 = 4x2 + 4x + 1

=> 3x2 + 10x – 8 = 0.

Phương trình cuối có hai nghiệm là x = –4 và x = Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Thử lại ta thấy phương trình (3) chỉ có nghiệm là x = Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

2. Phương trình chứa ẩn dưới dấu căn

Để giải các phương trình chứa ẩn dưới dấu căn bậc hai, ta thường bình phương hai vế để đưa về một phương trình hệ quả không chứa ẩn dưới dấu căn.

Ví dụ 2. Giải phương trình Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án = x – 2 (4).

Giải.

Điều kiện của phương trình (4) là x ≥ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Bình phương hai vế của phương trình (4) ta đưa tới phương trình hệ quả

(4) => 2x – 3 = x2 – 4x + 4

=> x2 – 6x + 7 = 0.

Phương trình cuối có hai nghiệm là x = 3 + √2 và x = 3 – √2 . Cả hai giá trị này đều thỏa mãn điều kiện của phương trình (4), nhưng khi thay vào phương trình (4) thì giá trị x = 3 – √2 bị loại (vế trái dương còn vế phải âm), còn giá trị x= 3 + √2 là nghiệm (hai vế cùng bằng √2 + 1).

Kết luận. Vậy nghiệm của phương trình (4) là x= 3 + √2 .



#soanbaitap Social https://ift.tt/2S06Bff
Nguồn : Phương trình quy về phương trình bậc nhất, bậc hai - soanbaitap.com

Đại cương về phương trình - soanbaitap.com

I. KHÁI NIỆM PHƯƠNG TRÌNH

1. Phương trình một ẩn

Phương trình ẩn x là mệnh đề chứa biến có dạng

f(x) = g(x) (1)

trong đó f(x) và g(x) là những biểu thức của x. Ta gọi f(x) là vế trái, g(x) là vế phải của phương trình (1).

Nếu có số thực x0 sao cho f(xo) = g(xo) là mệnh đề đúng thì xo được gọi là một nghiệm của phương trình (1).

Giải phương trình (1) là tìm tất cả các nghiệm của nó (nghĩa là tìm tập nghiệm).

Nếu phương trình không có nghiệm nào cả thì ta nói phương trình vô nghiệm (hoặc nói tập nghiệm của nó là rỗng).

2. Điều kiện của một phương trình

Khi giải phương trình (1), ta cần lưu ý với điều kiện đối với ẩn số x để f(x) và g(x) có nghĩa (tức là mọi phép toán đều thực hiện được). Ta cũng nói đó là điều kiện xác định của phương trình (hay gọi tắt là điều kiện của phương trình).

3. Phương trình nhiều ẩn

Ngoài các phương trình một ẩn, ta còn gặp những phương trình có nhiều ẩn số, chẳng hạn

3x + 2y = x2 – 2xy + 8, (2)

4x2 – xy + 2z = 3z2 + 2xz + y2 ( 3)

Phương trình (2) là phương trình hai ẩn (x và y), còn (3) là phương trình ba ẩn (x, y và z).

Khi x = 2, y = 1 thì hai vế của phương trình (2) có giá trị bằng nhau, ta nói cặp (x; y) = (2; 1) là một nghiệm của phương trình (2).

Tương tự, bộ ba số (x; y; z) = (–1; 1; 2) là một nghiệm của phương trình (3).

4. Phương trình chứa tham số

Trong một phương trình (một hoặc nhiều ẩn), ngoài các chữ đóng vai trò ẩn số còn có thể có các chữ khác được xem như những hằng số và được gọi là tham số.

II. PHƯƠNG TRÌNH TƯƠNG ĐƯƠNG VÀ PHƯƠNG TRÌNH HỆ QUẢ

1. Phương trình tương đương

Hai phương trình được gọi là tương đương khi chúng có cùng tập nghiệm.

2. Phép biến đổi tương đương

Định lí

Nếu thực hiện các phép biển đổi sau đây trên một phương trình mà không làm thay đổi điều kiện của nó thì ta được một phương trình mới tương đương

a) Cộng hay trừ hai vế với cùng một số hoặc cùng một biểu thức;

b) Nhân hoặc chia hai vế với cùng một số khác 0 hoặc với cùng một biểu thức luôn có giá trị khác 0.

Chú ý: Chuyển vế và đổi dấu một biểu thức thực chất là thực hiện phép cộng hay trừ hai vế với biểu thức đó.

3. Phương trình hệ quả

Nếu mọi nghiệm của phương trình f(x) = g(x) đều là nghiệm của phương trình f1(x) = g1(x) thì phương trình f1(x) = g1(x) được gọi là phương trình hệ quả của phương trình f(x) = g(x)

Ta viết

f(x) = g(x) => f1(x) = g1(x).

Phương trình hệ quả có thể có thêm nghiệm không phải là nghiệm của phương trình ban đầu. Ta gọi đó là nghiệm ngoại lai.



#soanbaitap Social https://ift.tt/2S06Bff
Nguồn : Đại cương về phương trình - soanbaitap.com

Các phép toán tập hợp - soanbaitap.com

I. GIAO CỦA HAI TẬP HỢP

Tập hợp C gồm các phần tử vừa thuộc A, vừa thuộc B được gọi là giao của A và B.

Kí hiệu C = A ∩ B (phần gạch chéo trong hình).

Vậy A ∩ B = {x| x ∈ A; x ∈ B}

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

II. HỢP CỦA HAI TẬP HỢP

Tập hợp C gồm các phần tử thuộc A hoặc thuộc B được gọi là hợp của A và B

Kí hiệu C = A ∪ B (phần gạch chéo trong hình).

Vậy A ∪ B = {x| x ∈ A hoặc x ∈ B}

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

III. HIỆU VÀ PHẦN BÙ CỦA HAI TẬP HỢP

Tập hợp C gồm các phần tử thuộc A nhưng không thuộc B gọi là hiệu của A và B

Kí hiệu C = A \ B (phần gạch chéo trong hình 7).

Vậy A \ B = A ∪ B = {x| x ∈ A và x ∈ B}

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Khi B ⊂ A thì A \ B gọi là phần bù của B trong A, kí hiệu CAB.

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án



#soanbaitap Social https://ift.tt/2S06Bff
Nguồn : Các phép toán tập hợp - soanbaitap.com

Tập hợp - soanbaitap.com

I. KHÁI NIỆM TẬP HỢP

1. Tập hợp và phần tử

Tập hợp (còn gọi là tập) là một khái niệm cơ bản của toán học, không định nghĩa.

Giả sử đã cho tập hợp A.

Để chỉ a là một phần tử của tập hợp A, ta viết a ∈ A (đọc là a thuộc A).

Để chỉ a không phải là một phần tử của tập hợp A, ta viết a ∈ A (đọc là P không thuộc A).

2. Cách xác định tập hợp

Một tập hợp có thể được xác định bằng cách chỉ ra tính chất đặc trưng cho các phần tử của nó.

Vậy ta có thể xác định một tập hợp bằng một trong hai cách sau

Liệt kê các phần tử của nó.

Chỉ ra tính chất đặc trưng cho các phần tử của nó.

Người ta thường minh họa tập hợp bằng một hình phẳng được bao quanh bởi một đường kín, gọi là biểu đồ Ven.

3. Tập hợp rỗng

Tập hợp rỗng, kí hiệu là ø, là tập hợp không chứa phần tử nào.

Nếu A không phải là tập hợp rỗng thì A chứa ít nhất một phần tử.

A ≠ ø <=> ∃x : x ∈ A.

II. TẬP HỢP CON

Nếu mọi phần tử của tập hợp A đều là phần tử của tập hợp B thì ta nói A là một tập hợp con của B và viết A B (đọc là A chứa trong B).

Thay cho A B ta cũng viết B ⊃ A (đọc là B chứa A hoặc B bao hàm A)

Như vậy A ⊂ B <=> (∀x : x ∈ A => x ∈ B).

Nếu A không phải là một tập con của B ta viết A ⊄ B.

Ta có các tính chất sau :

A Avới mọi tập hợp A

Nếu A ⊂ B và B ⊂ C thì A ⊂ C (h.4)

ø A với mọi tập hợp A.

III. TẬP HỢP BẰNG NHAU

Khi A ⊂ B và B ⊂ A ta nói tập hợp A bằng tập hợp B và viết là A = B. Như vậy

A = B <=> (∀x : x ∈ A <=> x ∈ B).

 



#soanbaitap Social https://ift.tt/2S06Bff
Nguồn : Tập hợp - soanbaitap.com

Mệnh đề - soanbaitap.com

I. MỆNH ĐỀ

Mỗi mệnh đề phải đúng hoặc sai.

Mỗi mệnh đề không thể vừa đúng, vừa sai.

II. PHỦ ĐỊNH CỦA MỘT MỆNH ĐỀ

Kí hiệu mệnh phủ định của mệnh đề P là Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án ta có

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án đúng khi P sai.

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án sai khi P đúng.

III. MỆNH ĐỀ KÉO THEO

Mệnh đề “Nếu P thì Q” được gọi là mệnh đề kéo theo, và kí hiệu là P => Q.

Mệnh đề P => Q còn được phát biểu là “P kéo theo Q” hoặc “Từ P suy ra Q”.

Mệnh đề P => Q chỉ sai khi P đúng và Q sai.

Như vậy, ta chỉ xét tính đúng sai của mệnh đề P => Q khi P đúng. Khi đó, nếu Q đúng thì P => Q đúng, nếu Q sai thì P => Q sai.

Các định lí, toán học là những mệnh đề đúng và thường có dạng P => Q.

Khi đó ta nói P là giả thiết, Q là kết luận của định lí, hoặc P là điều kiện đủ để có Q hoặc Q là điều kiện cần để có P.

IV. MỆNH ĐỀ ĐẢO – HAI MỆNH ĐỀ TƯƠNG ĐƯƠNG

Mệnh đề Q => P được gọi là mệnh đề đảo của mệnh đề P => Q

Mệnh đề đảo của một mệnh đề đúng không nhất thiết là đúng.

Nếu cả hai mệnh đề P => Q và Q => P đều đúng ta nói P và Q là hai mệnh đề tương đương. Khi đó ta có kí hiệu P  Q và đọc là P tương đương Q, hoặc P là điều kiện cần và đủ để có Q, hoặc P khi và chỉ khi Q.

V. KÍ HIỆU ∀ VÀ ∃

Ví dụ: Câu “Bình phương của mọi số thực đều lớn hơn hoặc bằng 0” là một mệnh đề. Có thể viết mệnh đề này như sau

∀x ∈ R : x2 ≥ 0 hay x2 ≥ 0, ∀x ∈ R.

Kí hiệu ∀ đọc là “với mọi”.

Ví dụ: Câu “Có một số nguyên nhỏ hơn 0” là một mệnh đề

Có thể viết mệnh đề này như sau

∃n ∈ Z : n < 0.

Kí hiệu ∃ đọc là “có một” (tồn tại một) hay “có ít nhất một” (tồn tại ít nhất một).

Phủ định của mệnh đề “∀x ∈ X, P(x) ” là mệnh đề “ ∃x ∈ X, Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án"

Phủ định của mệnh đề “∃x ∈ X, P(x)” là mệnh đề “ ∀ x ∈ X, Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án"

 



#soanbaitap Social https://ift.tt/2S06Bff
Nguồn : Mệnh đề - soanbaitap.com

Thứ Ba, 29 tháng 9, 2020

Bài 5. Hệ số góc của đường thẳng y=ax+b (a ≠ 0) - soanbaitap.com

Hệ số góc của đường thẳng y=ax+b (a ≠ 0) toán lớp 9 bài 5 giải bài tập được soạn và biên tập bởi đội ngũ giáo viên giàu kinh nghiệm giảng dạy môn toán. Đảm bảo chính xác dễ hiểu giúp các em nhanh chóng nắm được kiến thức trọng tâm trong bài Hệ số góc của đường thẳng y=ax + b (a ≠ 0) và ứng dụng giải các bài tập sgk để các em hiểu rõ hơn.

Bài 5. Hệ số góc của đường thẳng y=ax + b (a ≠ 0) thuộc : CHƯƠNG II. HÀM SỐ BẬC NHẤT và cùng thuộc PHẦN ĐẠI SỐ - TOÁN 9 TẬP 1

I. Lý thuyết Hệ số góc của đường thẳng y=ax+b (a#0)

1. Góc tạo bởi đường thẳng y=ax+b(a≠0) và trục Ox.

Gọi A là giao điểm của đường thẳng d:y=ax+b với trục Ox và T là một điểm thuộc đường thẳng, nằm phía trên trục Ox. Khi đó góc α=TAx^ được gọi là góc tạo bởi đường thẳng d:y=ax+b và trục Ox.

2. Hệ số góc của đường thẳng 

+) Khi a>0, góc tạo bởi đường thẳng y=ax+b và trục Ox là góc nhọn và nếu a càng lớn thì góc đó càng lớn nhưng vẫn nhỏ hơn 900.

+) Khi a<0, góc tạo bởi đường thẳng y=ax+b và trục Ox là góc tù và nếu a càng bé thì góc đó càng lớn nhưng vẫn nhỏ hơn 1800.

Như vậy, góc tạo bởi đường thẳng d:y=ax+b và trục Ox phụ thuộc vào a.

Người ta gọi a là hệ số góc của đường thẳng y=ax+b.

Lưu ý:

+) Khi a>0, ta có tan⁡α=a.

+) Khi a<0, ta có tan⁡(1800−α)=−a.

Từ đó tìm được số đo của góc 1800−α rồi suy ra số đo của góc α.

+) Các đường thẳng có cùng hệ số a (a là hệ số của x) thì tạo với trục Ox các góc bằng nhau.

3. Các dạng toán cơ bản

Dạng 1: Xác định hệ số góc của đường thẳng

Phương pháp:

Đường thẳng (d) có phương trình y=ax+b(a≠0) có a là hệ số góc.

Ví dụ: Hệ số góc của đường thẳng y=−2x+1 là a=−2

Dạng 2: Tính góc tạo bởi tia Ox và đường thẳng (d).

Phương pháp:

Gọi α là góc tạo bởi tia Ox và d. Ta có: a=tan⁡α

Ví dụ: Góc tạo bởi tia Ox và đường thẳng (d):y=3x+1 là α

Khi đó: tan⁡α=3 nên α=600

Hệ số góc của đường thẳng y=ax + b (a ≠ 0) toán lớp 9 bài 5 giải bài tập do đội ngũ giáo viên giỏi toán biên soạn, bám sát chương trình SGK mới toán học lớp 9. Được Soanbaitap.com biên tập và đăng trong chuyên mục giải toán 9 giúp các bạn học sinh học tốt môn toán đại 9. Nếu thấy hay hãy comment và chia sẻ để nhiều bạn khác cùng học tập.



#soanbaitap Social https://ift.tt/2S06Bff
Nguồn : Bài 5. Hệ số góc của đường thẳng y=ax+b (a ≠ 0) - soanbaitap.com