Thứ Ba, 26 tháng 11, 2019

Giải bài 19 trang 75 SGK Toán 9 tập 2

Giải bài 19 trang 75 SGK Toán 9 tập 2:

Bài 19 trang 75 SGK Toán 9 tập 2 thuộc Chương III: Góc với Đường tròn. Bài 3:Góc nội tiếp

Đề bài

Cho một đường tròn tâm \(O\), đường kính \(AB\) và \(S\) là một điểm nằm ngoài đường tròn. \(SA\) và \(SB\) lần lượt cắt đường tròn tại \(M, N\). Gọi \(H\) là giao điểm của \(BM\) và \(AN\). Chứng minh rằng \(SH\) vuông góc với \(AB\).

Phương pháp giải chi tiết

Xét đường tròn tâm \(O\) có \(AB\) là đường kính nên \(\widehat {AMB} = \widehat {ANB} = 90^\circ \) ( góc nội tiếp chắn nửa đường tròn)

Suy ra \(BM \bot SA;\,AN \bot SB\) mà \(BM \cap AN\) tại \(H\) nên \(H\) là trực tâm tam giác \(SAB.\)

Do đó \(SH \bot AB.\) (vì trong một tam giác ba đường cao đồng quy)

Các Kiến thức được áp dụng để giải bài 19 trang 75  sgk Toán 9 tập 2

Sử dụng góc nội tiếp chắn nửa đường tròn là góc vuông để chỉ ra các đường cao của tam giác \(SAB.\)

Sử dụng tính chất trực tâm để suy ra \(SH \bot AB.\)

Giải bài 19 trang 75 SGK Toán 9 tập 2 được đăng ở chuyên mục Giải Toán 9 và biên soạn theo phần Toán hình 9 thuộc SKG Toán lớp 9. Bài giải toán lớp 9 được biên soạn bởi các thầy cô giáo dạy văn tư vấn, nếu thấy hay hãy chia sẻ và comment để nhiều bạn khác cùng học tập cùng




Nguồn : Giải bài 19 trang 75 SGK Toán 9 tập 2

Không có nhận xét nào:

Đăng nhận xét