Thứ Tư, 27 tháng 11, 2019

Giải bài 40 trang 83 SGK Toán 9 tập 2

Giải bài 40 trang 83 SGK Toán 9 tập 2:

Bài 40 trang 83 SGK Toán 9 tập 2 thuộc Chương III: Góc với Đường tròn. Bài 5: Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn. 

Đề bài

Qua điểm \(S\) nằm bên ngoài đường tròn \((O)\), vẽ tiếp tuyến \(SA\) và cát tuyến \(SBC\) của đường tròn. Tia phân giác của \(\widehat{BAC}\) cắt dây \(BC\) tại \(D.\) Chứng minh \(SA = SD.\)

Phương pháp giải chi tiết

Gọi \(E\) là giao điểm thứ hai của \(AD\) với đường tròn \((O).\)

Xét đường tròn \((O)\) ta có:

+) \(\widehat{ADS}\) là góc có đỉnh nằm trong đường tròn chắn cung \(AB\) và \(CE.\)

\(\Rightarrow \widehat {ADS}=\dfrac{sđ\overparen{AB}+sđ\overparen{CE}}{2}.\) (1)

+) \(\widehat{SAD}\) là góc tạo bởi tia tiếp tuyến và dây cung chắn cung \(AE.\)

\(\Rightarrow \widehat {SAD}=\dfrac{1}{2} sđ\overparen{AE}.\) (2)

+) Có: \(\widehat {BAE} = \widehat {EAC}\) (do \(AE\) là phân giác góc \(BAC\)

\(\Rightarrow \) \(\overparen{BE}=\overparen{EC}\) (hai góc nội tiếp bằng nhau chắn hai cung bằng nhau).

\(\Rightarrow sđ\overparen{AB} + sđ\overparen{EC}\)\( = sđ\overparen{AB} + sđ\overparen{BE}=sđ\overparen{AE}\) (3)

Từ (1), (2), (3) \(\Rightarrow\widehat {ADS}=\widehat {SAD}\)\(\Rightarrow\) tam giác \(SDA\) cân tại \(S\) hay \(SA=SD\).

Các Kiến thức được áp dụng để giải bài 40 trang 83 sgk Toán 9 tập 2

+) Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn.

+) Số đo của góc tạo bởi tiếp tuyến của dây cung bằng nửa số đo cung bị chắn.

Giải bài 40 trang 83 SGK Toán 9 tập 2 được đăng ở chuyên mục Giải Toán 9 và biên soạn theo phần Toán hình 9 thuộc SKG Toán lớp 9. Bài giải toán lớp 9 được biên soạn bởi các thầy cô giáo dạy văn tư vấn, nếu thấy hay hãy chia sẻ và comment để nhiều bạn khác cùng học tập cùng




Nguồn : Giải bài 40 trang 83 SGK Toán 9 tập 2

Không có nhận xét nào:

Đăng nhận xét