Giải bài 37 trang 82 SGK Toán 9 tập 2:
Bài 37 trang 82 SGK Toán 9 tập 2 thuộc Chương III: Góc với Đường tròn. Bài 5: Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn.
Đề bài
Cho đường tròn \((O)\) và hai dây \(AB\), \(AC\) bằng nhau. Trên cung nhỏ \(AC\) lấy một điểm \(M\). Gọi \(S\) là giao điểm của \(AM\) và \(BC\). Chứng minh: \(\widehat {ASC} = \widehat {MCA}.\)
Phương pháp giải chi tiết
Xét đường tròn \((O)\), ta có:
\(\widehat{ASC}\) là góc có đỉnh ở ngoài đường tròn chắn cung \(MC\) và \(AB.\)
\(\Rightarrow \widehat{ASC} = \dfrac{sđ \overparen{AB}- sđ \overparen{MC}}{2}\) (1)
và \(\widehat {MCA}\) = \(\dfrac{sđ\overparen{AM}}{2}\) (2) (góc nội tiếp chắn cung \(\overparen{AM}\))
Theo giả thiết thì: \(AB = AC => \overparen{AB}=\overparen{AC}\) (hai dây bằng nhau căng hai cung bằng nhau).
\(\Rightarrow sđ\overparen{AB}-sđ\overparen{MC}=sđ\overparen{AC}-sđ\overparen{MC}=sđ\overparen{AM}\) (3)
Từ (1), (2), (3) suy ra: \(\widehat {ASC}=\widehat {MCA}.\) (đpcm)
Các Kiến thức được áp dụng để giải bài 37 trang 82 sgk Toán 9 tập 2
+) Góc có đỉnh nằm ngoài đường tròn có số đo bằng nửa hiệu số đo hai cung bị chắn.
Giải bài 37 trang 82 SGK Toán 9 tập 2 được đăng ở chuyên mục Giải Toán 9 và biên soạn theo phần Toán hình 9 thuộc SKG Toán lớp 9. Bài giải toán lớp 9 được biên soạn bởi các thầy cô giáo dạy văn tư vấn, nếu thấy hay hãy chia sẻ và comment để nhiều bạn khác cùng học tập cùng
Nguồn : Giải bài 37 trang 82 SGK Toán 9 tập 2
Không có nhận xét nào:
Đăng nhận xét