Thứ Năm, 28 tháng 11, 2019

Giải bài 44 trang 86 SGK Toán 9 tập 2

Giải bài 44 trang 86 SGK Toán 9 tập 2:

Bài 44 trang 86 SGK Toán 9 tập 2 thuộc Chương III: Góc với Đường tròn. Bài 6:Cung chứa góc 

Đề bài

Cho tam giác \(ABC\) vuông ở \(A\), có cạnh \(BC\) cố định. Gọi \(I\) là giao điểm của ba đường phân giác trong. Tìm quỹ tích điểm \(I\) khi \(A\) thay đổi.

Phương pháp giải chi tiết

Điểm A luôn nhìn đoạn thẳng AB dưới một góc \(90^\circ \) nên quỹ tích điểm \(A\) là đường tròn đường kính \(BC.\)

Xét tam giác \(ABC\) vuông tại \(A\) nên \(\widehat {ACB} + \widehat {ABC} = 90^\circ \), lại có \(BI\) là phân giác góc \(B\) và \(CI\) là phân giác góc \(C\) nên

\(\widehat {ICB} = \dfrac{1}{2}\widehat {ACB};\,\widehat {IBC} = \dfrac{1}{2}\widehat {ABC} \Rightarrow \widehat {ICB} + \widehat {IBC} = \dfrac{1}{2}\left( {\widehat {ACB} + \widehat {ABC}} \right) = \dfrac{1}{2}.90^\circ = 45^\circ \)

Xét tam giác \(IBC\) có \(\widehat {BIC} + \widehat {IBC} + \widehat {ICB} = 180^\circ \Leftrightarrow \widehat {BIC} = 180^\circ - 45^\circ = 135^\circ \)

Nên số đo góc \(BIC\) luôn không đổi.

Vậy khi điểm A thay đổi trên đường tròn đường kính BC thì điểm I thay đổi và luôn nhìn đoạn thẳng BC dưới một góc \(135^\circ .\)

Vậy điểm I thuộc hai cung chứa góc \(135^\circ \) dựng trên đoạn BC.

Kết luận: Quĩ tích các điểm I là hai cung chứa góc \(135^\circ \) dựng trên đoạn BC.

Các Kiến thức được áp dụng để giải bài 44 trang 86 sgk Toán 9 tập 2

+ Tính góc \(\widehat {BIC}\) rồi kết luận theo quỹ tích cung chứa góc dựng trên đoạn BC.

+ Sử dụng: Với đoạn thẳng \(BC\) và góc \(\alpha\, \, (0^0 < \alpha < 180^0)\) cho trước thì quỹ tích các điểm \(M\) thỏa mãn \(\widehat{CMB}=\alpha\) là hai cung chứa góc \(\alpha\) dựng trên đoạn \(CB.\)




Nguồn : Giải bài 44 trang 86 SGK Toán 9 tập 2

Không có nhận xét nào:

Đăng nhận xét