Giải bài 7 trang 38 SGK Toán 9 tập 2:
Bài 7 trang 38 sgk Toán 9 tập 2 thuộc chương IV: Hàm số y=ax^2 (a≠0). Phương trình bậc hai một ẩn. và là Bài 2: Đồ thị Hàm số y=ax^2 (a≠0)
Đề bài
Trên mặt phẳng tọa độ (h.10), có một điểm \(M\) thuộc đồ thị của hàm số \(y = a{x^2}\).
a) Tìm hệ số \(a\)
b) Điểm \(A(4; 4)\) có thuộc đồ thị không ?
c) Hãy tìm thêm hai điểm nữa (không kể điểm O) để vẽ đồ thị.
Phương pháp giải chi tiết
a) Vì \(M(2;1)\) thuộc hàm số \(y=ax^2\), thay \(x=2,\ y=1\) vào công thức hàm số, ta có:
\(1=a.2^2 \Leftrightarrow 1=a.4 \Leftrightarrow a=\dfrac{1}{4}\)
Khi đó , hàm số đã cho có dạng là: \(y=\dfrac{1}{4}x^2\) (1).
b) Thay \(x=4,\ y=4\) vào công thức hàm số (1), ta được:
\(4=\dfrac{1}{4}.4^2 \) \(\Leftrightarrow 4=\dfrac{16}{4}\) (luôn đúng)
Vậy điểm \(A(4; 4)\) thuộc đồ thị hàm số \(y = \dfrac{1}{4}{x^2}\).
c) Ta có điểm \(A'(-4;4)\) cũng đối xứng với điểm \(A(4; 4)\).
Điểm \(M'(-2; 1)\) đối xứng với điểm \(M(2; 1)\).
Vì đồ thị hàm số \(y=\dfrac{1}{2}x^2\) là đường cong đi qua gốc tọa độ, nhận trục \(Oy\) làm trục đối xứng nên \(A',\ M'\) cũng thuộc đồ thị.
Các kiến thức áp dụng để giải bài 7 trang 38 sgk Toán 9 tập 2
a) Điểm \(A(x_0; y_0)\) thuộc đồ thị hàm số. Thay \(x=x_0,\ y=y_0\) vào công thức hàm số \(y=ax^2\) ta tìm được \(a\).
b) Thay tọa độ điểm \(B(x_B; y_B)\) vào công thức hàm số \(y=ax^2\). Nếu ta được một đẳng thức đúng thì \(B\) thuộc đồ thị hàm số \(y=ax^2\).
c) Điểm \(A(x_0; y_0)\) có điểm đối xứng qua trục \(Oy\) là: \(A'(-x_0; y_0)\).
Giải bài 7 trang 38 sgk Toán 9 tập 2 được đăng ở chuyên mục Giải Toán 9 và biên soạn theo phần Toán đại 9 thuộc SKG Toán lớp 9. Bài giải toán lớp 9 được biên soạn bởi các thầy cô giáo dạy văn tư vấn, nếu thấy hay hãy chia sẻ và comment để nhiều bạn khác cùng học tập cùng.
Nguồn : Giải bài 7 trang 38 SGK Toán 9 tập 2
Không có nhận xét nào:
Đăng nhận xét