Giải bài 8 trang 169 SGK Đại số và Giải tích 11:
Bài 8 trang 169 SGK Đại số và Giải tích 11 thuộc Chương V: Đạo Hàm. Bài 3: Đạo hàm của hàm số lượng giác
Đề bài
Giải bất phương trình \(f'(x) > g'(x)\), biết rằng:
a) \(f(x) = x^3+ x - \sqrt2\), \(g(x) = 3x^2+ x + \sqrt2\)
b) \(f(x) = 2x^3- x^2+ \sqrt3\), \(g(x) = x^3+ \dfrac{x^{2}}{2} - \sqrt 3\)
Lời giải cụ thể
Câu a)
Phương pháp giải:
Tính đạo hàm của các hàm số f(x), g(x) và giải bất phương trình.
Lời giải chi tiết:
\(\begin{array}{l}
\,\,f'\left( x \right) = 3{x^2} + 1\\
\,\,\,\,\,\,g'\left( x \right) = 6x + 1\\
f'\left( x \right) > g'\left( x \right) \Leftrightarrow 3{x^2} + 1 > 6x + 1\\
\Leftrightarrow 3{x^2} - 6x > 0 \Leftrightarrow 3x\left( {x - 2} \right) > 0\\ \Leftrightarrow \left[ \begin{array}{l}
x > 2\\
x < 0
\end{array} \right.\\
\Rightarrow x \in \left( { - \infty ;0} \right) \cup \left( {2; + \infty } \right)\\
\end{array}\)
Câu b)
Phương pháp giải:
Tính đạo hàm của các hàm số f(x), g(x) và giải bất phương trình.
Lời giải chi tiết:
\(\begin{array}{l}
\,\,f'\left( x \right) = 6{x^2} - 2x\\
\,\,\,\,\,\,g'\left( x \right) = 3{x^2} + x\\
f'\left( x \right) > g'\left( x \right) \Leftrightarrow 6{x^2} - 2x > 3{x^2} + x\\
\Leftrightarrow 3{x^2} - 3x > 0 \Leftrightarrow 3x\left( {x - 1} \right) > 0 \\\Leftrightarrow \left[ \begin{array}{l}
x > 1\\
x < 0
\end{array} \right.\\
\Rightarrow x \in \left( { - \infty ;0} \right) \cup \left( {1; + \infty } \right)
\end{array}\)
Giải Bài 8 trang 169 SGK Đại số và Giải tích 11 được đăng ở chuyên mục Giải Toán 11 và biên soạn theo phần Toán đại 11 thuộc SKG Toán lớp 11. Bài giải toán lớp 11 được biên soạn bởi các thầy cô giáo dạy văn tư vấn, nếu thấy hay hãy chia sẻ và comment để nhiều bạn
#soanbaitap
Nguồn : Giải bài 8 trang 169 SGK Đại số và Giải tích 11: - soanbaitap.com
Không có nhận xét nào:
Đăng nhận xét